Lebuis, A.-M., Roux, C. \& Beauchamp, A. L. (1993). Acta Cryst. C49, 33-36.
Luo, H., Setyawati, I., Rettig, S. J. \& Orvig, C. (1995). Inorg. Chem. 34, 2287-2299.
Nugent, N. A. \& Mayer, J. M. (1988). In Metal-Ligand Multiple Bonds, ch. 5. New York: Wiley.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1996). C52, 1971-1973

A Five-Coordinate $\operatorname{Bis}(p$-bromophenylsalicylaldimino)chloroiron(III) Complex

Yalçin Elerman ${ }^{a}$ and Helmut Paulus ${ }^{b}$
${ }^{a}$ Department of Engineering Physics, Faculty of Sciences, University of Ankara, 06100 Besevler, Ankara, Turkey, and ${ }^{b}$ Strukturforschung, FB Materialwissenschaft, Technische Hochschule Darmstadt, Petersenstrasse 20, 64287 Darmstadt, Germany. E-mail: elerman@science. ankara.edu.tr

(Received 19 January 1996; accepted 29 April 1996)

Abstract

In the title complex, bis[2-(4-bromophenyliminomethyl)-phenolato- $\mathrm{N}, \mathrm{O}]$ chloroiron $(\mathrm{III}),\left[\mathrm{FeCl}\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrNO}\right)_{2}\right]$, the Fe^{3+} ion shows a distorted square-pyramidal geometry, with the N and O ligand atoms forming the base [$\mathrm{Fe}-\mathrm{O} 1.857$ (3) and 1.864 (3) \AA, and $\mathrm{Fe}-\mathrm{N} 2.144$ (3) and 2.164 (3) \AA] and the Cl atom at the apex $[\mathrm{Fe}-\mathrm{Cl}$ 2.238 (1) A].

Comment

The complexes of transition metal ions with Schiff bases are a large and growing class of compounds of both stereochemical and magnetochemical interest (Garnovskii, Nivorozhkin \& Minkin, 1973; Maggio, Pizzino \& Romano, 1974; Morassi, Bertini \& Sacconi, 1973). Characteristically, several distinct compounds may be isolated from one reaction mixture. The products may differ in the coordination number of the metal ion, the stereochemistry of ligand isomers or the degree of molecular complexity. The nature of the products appears to depend on many factors which include the solvent system, steric constraints imposed by ligand side groups, crystal-packing considerations and hybridization which, if any, is the predominant effect (Elmall, Elerman, Svoboda \& Fuess, 1993; Elmali, Atakol, Svoboda \& Fuess, 1993; Gerloch \& Mabbs, 1967).

The reaction of iron(III) chloride with the Schiff base p-bromophenylsalicylaldimine is one from which several complexes with similar steric and magnetic properties may be derived. The present five-coordinate monomeric iron(III) complex, (I), is a distorted square pyramid with the Cl atom at the apex. The Fe atom is 0.495 (2) \AA above the least-squares plane defined by the Schiff base N - and O -donor atoms, which show a small tetrahedral distortion with an r.m.s. displacement of 0.199 (3) \AA.

(I)

The bond lengths of Fe^{3+} (Table 2) are close to those in the related five-coordinate salen [salen is N, N-ethylenebis(salicylideneaminato)] complexes [$\mathrm{FeCl}($ salen $)]$ (Garnovskii et al., 1973) and $\left.\left[\mathrm{Fe}_{2} \text { (salen) }\right)_{2} \mathrm{O}\right]$ (Maggio et al., 1974), and also in chloro($1,1^{\prime}$-diphenyl-3, 3^{\prime} -ethylenediiminodi-1-butanonato)iron(III) (Morassi et al., 1973). The Fe 1 atom is located 0.268 (3) and 0.499 (3) \AA above the least-squares planes through $\mathrm{O} 1, \mathrm{C} 7, \mathrm{Cl3}$, N 1 (chelate 1) and O2, C14, C20, N2 (chelate 2), respectively. The chelate planes are inclined at angles of

Fig. 1. The molecular structure and atomic numbering of the title compound (ORTEPII; Johnson, 1976). The displacement ellipsoids are drawn at the 50% probability level.
13.7 (3) (chelate 1) and $7.7(3)^{\circ}$ (chelate 2) to the Ol , $\mathrm{N} 1, \mathrm{O} 2, \mathrm{~N} 2$ coordination plane.
The sums of bond angles at the N atoms, 359.8 (4) (at N 1) and $360.0(4)^{\circ}$ (at N 2), indicate $s p^{2}$ hybridization of these atoms. The phenyl group is nearly planar and the average interatomic $\mathrm{C}-\mathrm{C}$ distances in the two phenyl rings are found to be 1.386 (3) and 1.390 (3) \AA.

The monomeric molecules are held together in the crystal mostly by van der Waals interactions. The minimum intermolecular distances between two non-H atoms such as $\mathrm{Cl} 1 \cdots \mathrm{C} 23$ and $\mathrm{Cl1} \cdots \mathrm{C} 5$ are 3.746 and $3.805 \AA$, respectively.

Experimental

Solutions of p-bromophenylsalicylaldimine (2 mmol) in acetonitrile (50 ml) and $\mathrm{FeCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}(2 \mathrm{mmol})$ in methanol (30 ml) were mixed and heated to boiling. The mixture was left to reflux for 1 d whereupon suitable crystals were formed.

Crystal data

$\left[\mathrm{FeCl}\left(\mathrm{C}_{13} \mathrm{H}_{9} \mathrm{BrNO}\right)_{2}\right]$
$M_{r}=641.54$
Monoclinic
P_{1} / n
$a=10.068(1) \AA$
$b=21.731(2) \AA$
$c=11.293(1) \AA$
$\beta=98.26(1)^{\circ}$
$V=2445.1(4) \AA^{3}$
$Z=4$
$D_{x}=1.74 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection
Stoe-Siemens AED
diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
empirical ψ scan
(Kopfman \& Huber,
1968; North, Phillips \&
Mathews, 1968)
$T_{\text {min }}=0.225, T_{\text {max }}=$ 0.481

2913 measured reflections

Refinement

Refinement on F^{2}
$R(F)=0.035$
$w R\left(F^{2}\right)=0.080$
$S=1.049$
2913 reflections
307 parameters
H -atom coordinates fixed
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0449 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Mo $K \alpha$ radiation
$\lambda=0.71069 \AA$
Cell parameters from 54 reflections
$\theta=30-36^{\circ}$
$\mu=4.02 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Plate
$0.45 \times 0.35 \times 0.12 \mathrm{~mm}$ Black
2913 independent reflections
2422 observed reflections
$[I>2 \sigma(I)]$
$\theta_{\max }=22.52^{\circ}$
$h=-10 \rightarrow 10$
$k=0 \rightarrow 23$
$l=0 \rightarrow 12$
3 standard reflections
frequency: 180 min
intensity decay: 2%

Fel-O1	1.857 (3)	N2-C20	1.295 (5)
Fel-02	1.864 (3)	N2-C21	1.423 (5)
Fe 1 - N 1	2.144 (3)	$\mathrm{C} 1-\mathrm{C} 6$	1.369 (6)
Fe 1 - N 2	2.164 (3)	$\mathrm{C} 1-\mathrm{C} 2$	1.385 (6)
$\mathrm{Fe} 1-\mathrm{Cll}$	2.238 (1)	C2-C3	1.383 (6)
$\mathrm{Brl}-\mathrm{C} 24$	1.902 (4)	C3-C4	1.364 (7)
$\mathrm{Br} 2-\mathrm{C} 4$	1.902 (4)	C8-C9	1.403 (6)
$\mathrm{O} 1-\mathrm{Cl} 3$	1.323 (5)	C9-C10	1.365 (6)
O2-C14	1.318 (5)	C10-C11	1.368 (7)
N1-C7	1.291 (5)	C11-C12	1.379 (7)
$\mathrm{N} 1-\mathrm{Cl}$	1.435 (5)		
$\mathrm{O} 1-\mathrm{Fel}-\mathrm{O} 2$	136.12 (14)	$\mathrm{Cl} 4-\mathrm{O} 2-\mathrm{Fe} 1$	132.5 (3)
$\mathrm{Ol}-\mathrm{Fel}-\mathrm{Nl}$	87.21 (13)	C7-N1-Cl	116.5 (3)
$\mathrm{O} 2-\mathrm{Fel}$ - N 1	86.24 (13)	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{Fe} 1$	123.4 (3)
$\mathrm{O} 1-\mathrm{Fel}-\mathrm{N} 2$	87.87 (13)	$\mathrm{Cl}-\mathrm{N} 1-\mathrm{Fel}$	119.9 (3)
$\mathrm{O} 2-\mathrm{Fel}-\mathrm{N} 2$	86.96 (12)	C20-N2-C21	117.2 (3)
$\mathrm{N} 1-\mathrm{Fel}-\mathrm{N} 2$	164.24 (13)	$\mathrm{C} 20-\mathrm{N} 2-\mathrm{Fel}$	121.5 (3)
$\mathrm{Ol}-\mathrm{Fe} 1-\mathrm{Cll}$	113.47 (11)	$\mathrm{C} 21-\mathrm{N} 2-\mathrm{Fel}$	121.3 (3)
$\mathrm{O} 2-\mathrm{Fel}-\mathrm{Cl1}$	110.39 (10)	C6-C1-N1	120.5 (4)
$\mathrm{Nl}-\mathrm{Fel}-\mathrm{Cll}$	100.29 (10)	$\mathrm{C} 2-\mathrm{Cl}-\mathrm{N} 1$	119.1 (4)
N2-Fel-Cll	95.41 (9)	C3-C4-Br2	118.8 (4)
C13-O1-Fel	136.0 (3)	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{Br} 2$	120.0 (4)

Values of $R_{\text {int }}$ have not been calculated since symmetry-related reflections were deleted before calculation. H atoms were located geometrically and not refined.

Data collection: DIF4 (Stoe \& Cie, 1991a). Cell refinement: DIF4. Data reduction: REDU4 (Stoe \& Cie, 1991b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976).

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1355). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2 HU , England.

References

Elmalı, A., Atakol, A., Svoboda, I. \& Fuess, H. (1993). Acta Cryst. C49, 965-967.
Elmalı, A., Elerman, Y., Svoboda, I. \& Fuess, H. (1993). Acta Cryst. C49, 1365-1367.
Garnovskii, A. D., Nivorozhkin, A. L. \& Minkin, V. I. (1973). Coord. Chem. Rev. 126, 1-42.
Gerloch, M. \& Mabbs, F. E. (1967). J. Chem. Soc. A. pp. 1598-1608
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kopfman, G. \& Huber, R. (1968). Acta Cryst. A24, 348-351.
Maggio, F., Pizzino, T. \& Romano, V. (1974). Inorg. Nucl. Chem. Lett. 10, 1005-1008.
Morassi, R., Bertini, I. \& Sacconi, L. (1973). Coord. Chem. Rev. 11, 343-369.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Stoe \& Cie (1991a). DIF4. Diffractometer Control Program. Version 7.08. Stoe \& Cie, Darmstadt, Germany.

Stoe \& Cie (1991b). REDU4. Data Reduction Program. Version 7.08. Stoe \& Cie, Darmstadt, Germany.

Acta Cryst. (1996). C52, 1973-1976

anti,mer-[Bis(2-diphenylphosphinoethyl)(n-propyl)amine- $\left.N, P, P^{\prime}\right]$ (phenylethynyl)-[(Z)-1- \boldsymbol{p}-tolyl-4-phenyl- η^{3}-but-1-en-3-ynyl]ruthenium(II) Chloroform Solvate

Claudio Blanchin,* Dante Masi, Maurizio Peruzzini, Antonio Romerosa and Fabrizio Zanobini

Istituto per lo Studio della Stereochimica ed Energetica dei Composti di Coordinazione, CNR, Via J. Nardi 39, 50132 Florence, Italy
(Received 20 December 1995; accepted 26 February I996)

Abstract

The title structure, $\left[\mathrm{Ru}\left(\mathrm{C}_{8} \mathrm{H}_{5}\right)\left(\mathrm{C}_{17} \mathrm{H}_{13}\right)\left(\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{NP}_{2}\right)\right]$.$\mathrm{CHCl}_{3}$, consists of discrete anti,mer- $\mathrm{Ru}(\mathrm{C} \equiv \mathrm{CPh})\left\{\eta^{3}\right.$ $\mathrm{PhC} \equiv \mathrm{C}-\mathrm{C}=\mathrm{CH}(p$-tolyl) $\}$ (PNP)] neutral molecules, where PNP is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}$, and CHCl_{3} solvate molecules. The $\mathrm{Ru}^{\mathrm{II}}$ metal centre is pseudo-octahedrally coordinated by a meridional tridentate PNP ligand, a phenylethynyl ligand and a η^{3}-bonded (Z)-1-p-tolyl-4-phenyl- η^{3}-but-1-en-3-ynyl ligand. The butenynyl moiety is anti with respect to

the n-propyl tail on the N -atom donor of the aminodiphosphine ligand and lies in a plane almost perpendicular to that containing the $\mathrm{Ru}(\mathrm{PNP})$ moiety.

Comment

In recent years, there has been considerable interest in the synthesis, structure and reactivity of Ru"1-enynyl complexes (Hill, 1995). In particular, we have reported recently that the $\mathrm{Ru}^{\mathrm{II}}$-vinylidene complexes fac, cis- and mer, trans $-\left[\mathrm{RuCl}_{2}\{\mathrm{C}=\mathrm{C}(\mathrm{H}) R\}(\mathrm{PNP})\right]$, where R is Ph or p-tolyl and PNP is $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}\right)_{2}$, react with $\mathrm{LiC} \equiv \mathrm{CPh}$ in tetrahydrofuran to afford enynyl and dienynyl complexes, respectively (Bianchini, Innocenti, Peruzzini, Romerosa \& Zanobini, 1996).
As a complement to our studies of $\mathrm{C}-\mathrm{C}$ coupling reactions involving 1 -alkynes, we report here the X ray diffraction analysis of the $\mathrm{Ru}^{\text {II }}$-enynyl complex anti,mer $-\mathrm{Ru}(\mathrm{C} \equiv \mathrm{CPh})\left\{\eta^{3}-\mathrm{PhC} \equiv \mathrm{C}-\mathrm{C}=\mathrm{CH}(p\right.$-tolyl $\left.)\right\}$ (PNP)]. CHCl_{3}, (I), prepared by treatment of fac, cis-$\left[\mathrm{RuCl}_{2}\{\mathrm{C}=\mathrm{C}(\mathrm{H})(p\right.$-tolyl $\left.)\}(\mathrm{PNP})\right]$ in tetrahydrofuran with two equivalents of $\mathrm{LiC} \equiv \mathrm{CPh}$ (Bianchini, Innocenti, Peruzzini, Romerosa \& Zanobini, 1996). The structure of this complex is of great relevance in confirming that the $\mathrm{C}-\mathrm{C}$ bond-forming reaction leading to the enynyl fragment involves vinylidene and σ-alkynyl ligands.

(I)

An ORTEPII (Johnson, 1976) drawing of the title compound with the atomic numbering scheme is shown in Fig. 1. For clarity, the phenyl substituents of the PNP ligand have been omitted. The crystal structure consists of discrete anti,mer $-[\mathrm{Ru}(\mathrm{C} \equiv \mathrm{CPh})$ -$\left\{\eta^{3}-\mathrm{PhC} \equiv \mathrm{C}-\mathrm{C}=\mathrm{CH}(p\right.$-tolyl $\left.\left.)\right\}(\mathrm{PNP})\right]$ molecules and clathrated chloroform molecules. The metal atom is pseudo-octahedrally coordinated by the three donor atoms of a meridional PNP ligand, by a phenylethynyl ligand and by a $\eta^{3}-\mathrm{PhC} \equiv \mathrm{C}-\mathrm{C}=\mathrm{CH}(p$-tolyl) group.

The two diphenylphosphine ends of the PNP ligand are bent towards the N atom $[\mathrm{P}(1)-\mathrm{Ru}(1)-\mathrm{N}(1)$ 82.0 (2) and $\left.\mathrm{P}(2)-\mathrm{Ru}(1)-\mathrm{N}(1) 84.2(2)^{\circ}\right]$ as a consequence of the chelate-ring bite. The $\mathrm{Ru}(1)-\mathrm{N}(1)$ $[2.267$ (6) \AA], $\mathrm{Ru}(1)-\mathrm{P}(1)$ and $\mathrm{Ru}(1)-\mathrm{P}(2)$ distances [2.319 (2) and 2.307 (2) A, respectively], although somewhat shorter than those found in anti, mer $-[\mathrm{Ru}(\mathrm{C} \equiv \mathrm{CPh})$ ($\left.\left.\eta^{3}-\mathrm{PhC} \equiv \mathrm{C}-\mathrm{C}=\mathrm{CHPh}\right)(\mathrm{PNP})\right]$ (Bianchini, Innocenti, Peruzzini, Romerosa \& Zanobini, 1996), are in the range of those found for related $\mathrm{Ru}(\mathrm{PNP})$ complexes

